Nauro F. Campos

Back to the Future: The Growth Prospects of Transition Economies Reconsidered
BACK TO THE FUTURE:
THE GROWTH PROSPECTS OF
TRANSITION ECONOMIES RECONSIDERED*

Nauro F. Campos**
CERGE-EI, Prague,
Centre for Economic Policy Research, London, and
William Davidson Institute at the University of Michigan.

This version: August 15, 2000

Abstract. How many years will the average transition economy need to reach the income level of the average OECD country? The favored methodology in use to answer such questions is referred to as the BLR approach, because it uses specifications from Barro, and Levine and Renelt. The literature has so far refrained from identifying and testing the underlying assumptions of the BLR approach. This paper attempts to fill this gap. Our results contrast sharply with the assumptions and findings from the BLR approach, questioning its might and challenging our understanding of the transition process in its key dimension.

Journal of Economic Literature classification numbers: E23, O40, P20, P52.
Keywords: economic growth, transition economies, growth prospects.

* I thank John Bonin, Laszlo Csaba, Jan Fidrmuc, Randall Filer, Jürgen von Hagen, Byeongju Jeong, Ella Kallai, Jan Kmenta, Vincent Koen, Lubomir Lizal, Maxim Nikitin, Jeffrey Nugent, Vladimir Popov, James Robinson, Mark Schaffer, Viatcheslav Vinogradov, two anonymous referees and seminar participants at CERGE-EI, University of São Paulo, ZEI-University of Bonn, CEPR Summer Workshop on Transition Economics (Budapest), EACES (Varna), IMAD (Bled), and EPCS (Lisbon) Meetings for valuable comments on earlier versions. The paper benefited immensely from a visit of the author to the Center for European Integration Studies (ZEI) at the University of Bonn. Aurelijus Dabušinskas and Dana Zlabkova provided alacritous research assistance. The responsibility for all remaining errors is entirely mine. The data set constructed for this paper is available from the author upon request, or as http://home.cerge.cuni.cz/ncampos/btfpanel.xls

** CERGE-EI, P.O. Box 882, Politických vězňů 7, 111 21 Prague 1, Czech Republic. E-mail: nauro.campos@cerge.cuni.cz
1. INTRODUCTION

How many years will the average transition economy need to reach the income level of the average OECD country? What will be the average growth rates of the transition economies for the next thirty years? How fast will the average transition economy “catch-up” with the poorest members of the European Union? How long will it take for all the “command economy features” to disappear from these economies? And once they disappear, which transition economies need be treated as developing countries? These are important inter-related questions. And difficult ones too because the transition experience, paradoxically, justifies and entraps the available answers. It justifies them by appealing to the fact that transition is temporary: after a while, the standard set of growth determinants will take over. On the other hand, the uniqueness of the transition experience entraps the available answers because it questions whether and how fast the transition—as well as the remaining command—features will disappear.¹

The focus of the burgeoning literature addressing these questions is on growth prospects and hence concerns estimating, or forecasting, long-run growth rates. The methodology favored in this literature is here referred to as the Barro-Levine-Renelt (hereafter, BLR) approach. It proceeds in two steps, first coefficients from growth regressions (on large samples of developing countries) are estimated (or taken from specifications found in Barro, 1991, and/or Levine and Renelt, 1992), and second these coefficients are imposed

¹ Fisher et al. (1996a) point out that “a useful way to think about the current growth prospects of the transition economies is to consider them subject to two sets of forces: those arising from the transition and transformation process, and the basic neoclassical determinants of growth. The further along a country is in the transition process, the less weight on the factors that determine the transitional growth rate, and the greater the weight on the standard determinants of growth” (p. 231).
on transition economies’ cross-sectional data. The literature refrained from highlighting and testing the assumptions buttressing the **BLR approach**. This paper attempts to fill this gap.

The objective of this paper is to discuss the limitations of the available methods for assessing the growth prospects transition economies face, and by doing so, investigate long-run economic growth determinants in these economies. The paper is organized as follows. Section 2 reviews the literature on the growth prospects the transition countries face. Section 3 critically details the mechanics of the **BLR approach**. Section 4 presents the data on transition economies used to re-estimate the **BLR equations**, in Section 5. Our results contrast sharply with the assumptions and findings from the **BLR approach**, questioning its might and challenging our understanding of the transition process in its key dimension. Section 6 concludes.

2. RELATED STUDIES

The objective of this section is to review the literature on the growth prospects the transition economies face. The emphasis is on cross-country studies, in particular, those paying attention not only to Central and Eastern Europe but also to former Soviet Union countries.

The first systematic analysis of growth prospects of transition economies, to the best of our knowledge, appeared in the *World Economic Outlook* (IMF, 1996) in the chapter “Long-Term Growth Potential in the Countries in Transition”. It uses the **BLR approach** to simulate the effects of lowering the share of public expenditures (except on education) to 15

percent of GDP and of raising investment rates to 30 percent of GDP. Not surprisingly, it finds that both changes would increase growth substantially.

Havlik (1996) bypasses the *BLR approach* by assuming a growth rate differential in real per capita GDP of 3 percentage points between the CEEC-7 and the European Union average. The question is: given the 1995 levels of real per capita GDP, how many years will the CEEC-7 countries need to catch-up with the EU or, more likely, with its poorer members? Havlik concludes that “convergence between the two most advanced CEEC countries and Spain (…) could not happen before 2005. For the other CEEC members to converge to the EU average by 2010 would require a growth differential of more than 5 per cent, a highly unrealistic assumption” (1996, pp.42-44).

Denizer (1997) stresses that initial conditions matter, as proxied by distance (in miles) from Vienna and whether the country was independent before socialism. For growth prospects, Denizer opts for using only the Levine-Renelt specification on the basis that it “includes variables that are shown to be robust in various specifications of the growth equation” (1997, p. 13). In addition, Denizer extends previous analyses by considering a broader sample of transition economies (adding Mongolia, China and Vietnam). Finally, as a simulation exercise, he evaluates the impact of raising the investment rate to 30 percent from current levels on the number of years these economies will need to reach current OECD income levels.

One important contribution to this literature is made in the European Bank for Reconstruction and Development’s *Transition Report 1997* (EBRD, 1997, chapter 6). This Report contrasts the findings on the transition economies’ growth prospects that originate from the Levine-Renelt specification with those that originate from an alternative

3 *CEECE-7* is Hungary, Czech Republic, Poland, Slovak Republic, Slovenia, Bulgaria and Romania.
specification that includes, *inter alia*, an index of institutional development.\(^4\) This suggests a downward revision of the forecasted long-run growth rates: even for those transition economies with relatively high-quality institutions (and for which, institutional data are available), the absence of further institutional change should lower long-term growth rates by 1.5 percentage points.

Fisher, Sahay and Vegh (1997) use coefficients from Barro (1991) and from Levine and Renelt (1992) and cross-sectional data (for 1994) from 15 transition economies to forecast GDP and per capita GDP growth rates. They also conduct two simulation exercises. The first uses the Barro coefficients to investigate the consequences (in terms of the number of years needed to reach current OECD income levels) of lowering government consumption from current levels to 10 percent of GDP. The second uses the Levine and Renelt specification to look at the impact on growth of raising the investment rate to 30 percent of GDP from current levels. In subsequent work (1998), the authors use the *BLR approach* for a smaller sample of transition economies (Central European and Baltic countries) to assess their catching-up prospects with the European Union. They carry out two simulation exercises to estimate the number of years it will be needed to these transition economies to converge to the income levels of the three “low-income EU countries,” Greece, Portugal and Spain, assuming that the latter will grow at 2 per cent per annum. The first simulation uses the Barro specification to investigate the consequences of lowering government consumption from current levels to 10 percent of GDP. The second uses the Levine and Renelt specification to look at the impact on growth of raising the investment rate to 30 percent of GDP, from its

\(^4\) This composite index encompasses “expropriation risk”, “rule of law”, “risk of contract repudiation by the government”, “corruption”, and “quality of the bureaucracy” (EBRD, 1997, p. 106). The “enlarged” Levine-Renelt specification includes enrollment rates in primary school, changes in international prices, and growth of labor force (instead of population growth).
current levels. One innovation this paper brings is a quantification of the income losses incurred during the socialist period: using 1937 data for 6 countries, they estimate that approximately two-thirds of GDP per capita were lost during the socialist experiment.

There are a number of important studies focusing on smaller samples of transition countries. Borenzstein and Montiel (1992) and Sachs and Warner (1996) both examine only three transition countries. The former uses the Mankiw-Romer-Weil framework to identify long term growth paths, while the latter uses three countries’ experience to argue that harmonizing with the European Union policy standards will result in lower growth rates than following the policies of the group the authors define as “very fast growing developing economies.” Barbone and Zalduendo (1997) modify the BLR approach in that they estimate their own theoretical model for a large sample of developing countries and then use the coefficients to discuss accession to the European Union of five candidates.5

3. THE BLR APPROACH

The BLR approach is ubiquitous. This section discusses it in detail. The BLR approach consists of two steps. First, the coefficients from growth regressions on large samples of developing countries are estimated or, more often, “taken” from Barro (1991) and/or Levine and Renelt (1992). The “Barro equation” (and the ordinary least squares estimates) used in the papers reviewed above is:

\[
\hat{GDPGROWTH} = 0.0302 - 0.0075 \times Y0 + 0.025 \times PRIM + 0.0305 \times SEC - 0.119 \times GOV,
\]

while the “Levine and Renelt equation” (and the ordinary least squares estimates) is:

\[
\hat{GDPGROWTH} = -0.83 - 0.35 \times Y0 - 0.38 \times POP + 3.17 \times SEC + 17.5 \times INV,
\]

5 See also Barta and Url (1996) and Fidrmuc (2000).
where \(GDPGROWTH \) is per capita real GDP growth, \(Y_0 \) is the initial level of per capita income, \(PRIM \) is the gross primary school enrollment rate, \(SEC \) is the gross secondary school enrollment rate, \(POP \) is the rate of population growth, \(GOV \) is the share of government consumption in GDP, and \(INV \) is the share of investment in GDP.

The second step in the BLR approach is to impose these coefficients on transition economies’ data in the following manner. First, data for a set of transition economies are collected on all BLR variables, often for 1994 or 1995. Second, these values are, for each country, multiplied by their respective coefficients and summed to the constant term. The result is the estimated long-run growth rate.

The long-run growth rates the BLR approach generates average 5.2 percent and range from 1.8 percent (Bulgaria) to 11.57 percent (Turkmenistan). These rates are clearly too high and this is because transition economies have higher stocks of physical and human capital and lower rates of population growth vis-à-vis the market economies, at similar levels of development, upon which those least squares coefficients are estimated. By imposing these regression coefficients on transition economies’ data, the approach implicitly assumes that the transition countries are structurally identical to market economies at similar levels of development. Indeed, that this crucial assumption remains untested is a major limitation of the BLR approach.\(^6\) In order to test this assumption, one needs to estimate the BLR equations

\(^6\) There are some other important problems. What the literature calls the “Barro specification” can not be found in Barro’s 1991 paper. There is one specification that contains the coefficients shown above (equation 1 in Table 1, pp. 410-11), but it contains three other variables: the sum of the number of revolutions and coups per year, the number of political assassinations per capita per year, and “the magnitude of the deviation of the 1960 PPP value for the investment deflator (U.S.=1) from the sample mean” (Barro, 1991). Although the “Levine and Renelt specification” is in their 1992 paper, this specification does not solely includes variables that are robust in explaining growth. Indeed, the
using transition countries’ data. If the resulting coefficients are similar to the ones presented above, then the approach is fully justified.

4. DATA AND METHODOLOGY

The data set constructed for this paper contains all the variables in the two equations underlying the BLR approach — namely, initial per capita income, per capita GDP growth rates, population growth,\(^7\) gross domestic investment (as a share of GDP), gross enrollment ratios in primary and secondary school, and general government expenditures and consumption (as a share of GDP)— and covers the period 1989 to 1998. Table 1 gives basic statistics, sources, coverage, and number of missing observations per series, Table 2 shows the countries in the sample, and Table 3 has the correlation matrix.

[Insert Table 1 about here]

A caveat about data quality and comparability is needed. These problems are many and are well documented (Bartholdy, 1997). Socialist statistical offices had a comparative advantage in measuring quantities, and were ill equipped to deal with issues like price changes (let alone inflation) and unemployment. Moreover, the systemic transformation meant a radical change in incentives from fulfilling plan targets to evading taxes, from over-reporting to under-reporting output. The combination of these difficulties in measuring quantity and prices has led De Broeck and Koen to note that, in transition, there is no “single, true real GDP series” (2000). Last, but not least, the initial years of the transition witnessed an

\(\text{results in Levine and Renelt’s Table 1 (1992, p. 947) indicate that population growth is not a “robust” growth determinant.}\)

\(^7\) Notice that population growth does not fully reflect changes in the labor force caused by \textit{inter alia} differences in participation rates and migration. The latter was sizeable in some countries in the early 1990s, like Albania or Armenia. I am thankful to an anonymous referee for the latter point.
extraordinary explosion in size of the “hidden” economy. All these factors should be kept in mind when examining the results below.

One difficulty in identifying which countries are “at similar levels of development” is that while the transition economies started out clustered in the “upper-middle income” group, ten years later they are found widely spread over the rank of countries (by their level of development). This can be fully grasped if we name the “new neighbors” of the transition economies. Among transition countries, Tajikistan and the Kyrgyz Republic have the lowest GDP per capita in 1998 (followed by Moldova), while Slovenia has the highest (followed by the Czech Republic and Croatia, respectively). The “median” transition economy is Kazakhstan. Bangladesh is the developing country with the same GNP per capita in 1998 as Tajikistan and the Kyrgyz Republic. Haiti and Mauritania are the countries with the same GNP per capita in 1998 as Moldova. At the other extreme of this distribution, the country immediately above Slovenia is Portugal, and the one immediately below is Argentina. The Czech Republic ranks between Uruguay and Chile, while Croatia ranks between Brazil and Hungary. The dispersion in the transition group increased substantially since 1989 and this list of countries in close positions clarifies the difficulty in establishing the relevant comparators or groups of countries at similar levels of development. Most of the former

8 The World Bank ranks countries by their level of economic development, using as criterion (1998) GNP per capita (exchange rates conversion). “The groups are: low-income, $760 or less; lower-middle-income, $761-$3,030; upper-middle-income, $3,031-$9,630; and high-income: $9,361 or more” (World Bank, 1999/2000 World Development Report, p. 291). According to this Report, Slovenia is the only “high income” country in this sample of 25 transition economies.

9 As for levels of development, one can argue that income per capita alone does not do justice to the years of effort to improve social conditions (e.g., education and health) that characterized the socialist regimes. UNDP (1998) ranks 174 countries according to their “human development index” (which
Soviet Union countries end this period as “low income” or “lower-middle income,” while the majority of the Central and Eastern Europeans (and Baltic) countries in the late 1990s are classified as “upper-middle income” economies.

Clearly, dispersion increased because of large differences in performance. Table 2 shows annual real GDP growth rates. A few remarks are in order. First, as it can be seen from the last column, so far only three countries have surpassed the 1989 level of per capita GDP. Second, the countries of Eastern Europe experienced output declines that turned out to be much smaller than the ones observed, at a later date, among the CIS economies. And finally, there seems to be a “Baltic puzzle”: although Estonia, Latvia and Lithuania all had output contractions comparable to other CIS countries, their recovery was much faster.

[Insert Tables 2 and 3 about here]

What can explain these differences? The expectation is that at least part of the answer can be found in the variables underlying the BLR approach, namely in investment rates, population growth, school enrollment ratios, and government consumption. Two remarks: one is that this set of variables does not fully capture policy differences, at least not as commonly understood in the literature reviewed above. The other refers to the share of government consumption in GDP. In the study of the effects of government consensus is reflects, in addition to income, life expectancy and education attainment.) This sample of 25 transition economies stretches from the 37th (Slovenia, immediately preceded by Argentina and followed by Uruguay) to the 118th place (Tajikistan, immediately preceded by Cape Verde and followed by Honduras). The median country is Macedonia (in 80th place), immediately preceded by Lithuania and followed by Syria. In sum, the dispersion seems to have increased also along these lines.

10 These are gross enrollment rates for “basic education” (ISCED 1 and 2) and “secondary education” (ISCED 3). The former is often called "compulsory schooling" and normally lasts from age 6 or 7 to age 14 or 15. Often divided into primary (to age 10) and lower secondary levels.
being built upon the notion that different types of expenditures have different effects on economic growth.11 Yet notice that in the BLR approach (in the “Barro specification” in particular) it enters with a negative sign.

The BLR approach confines methodological choices: the two equations are to be estimated by ordinary least squares on cross-sectional data, correcting for heteroscedasticity. However, restricting the analysis to the cross-sectional dimension (or not extending it into the time-series dimension) clearly does no justice to “transition.” How can we take into account “transition features” without leaving the BLR framework? In other words, how can we allow for the typically V-shaped short-run output dynamics as well as for the effects of different policy choices without adding variables? One solution is to re-base the BLR variables on different time scales,12 another is to estimate the BLR equations for downturn and recovery phases separately. These allow using pooled OLS while attending to problems of simultaneity (between growth and policies as discussed by Heybey and Murrell, 1999), omitted variables as well as the capture of the “phase effect.”

12 The results discussed in the next section were subjected to four different of time scales: the first is “transition time” from Berg et al. (1999) with year zero denoting the “year in which central planning was decisively abandoned.” The second is “years of transition” following Blanchard (1997), with year one indicating the year of the most significant fall in industrial output. Note that Blanchard studies just a few countries, so data from the U.N Economic Commission for Europe (1996) were used to identify this year for the complete sample. The third is “post-reform time” from Aslund et al. (1996), with zero marking the year of most intense reform. The fourth and last time scale used was “stabilization time” from Fisher et al. (1998), with year zero being the year of the introduction of the stabilization program.
5. BACK TO THE FUTURE

The objective of this section is to estimate the equations underlying the BLR approach using the data set discussed above. It is important to keep in mind that the results that follow are not extremely robust: the exclusion of certain countries in some runs, or the inclusion of some variables in certain specifications, alters the statistical significance levels of many coefficients. Therefore, we found it important to report in addition to the “original BLR equations,” results for a number of stripped as well as enlarged versions of these equations to allow some latitude in judgement.

We start by exploring the cross-sectional dimension of our data set, for the case of the “Barro specification” (Table 4). We follow Barro (1991) and report ordinary least squares estimates on averages for all variables over the period 1990-1998. Reading the table from top to bottom, notice first the rather few statistically significant coefficients. This is surprising because, after all, these variables have been identified as long-run (growth) determinants and one would expect that they would play a role, at least in a cross-sectional frame. Examining the individual columns (variables), notice that the sign of the initial income coefficient is positive (although not often statistically significant) in all five specifications contrary to the expectation nested in the BLR approach. On the positive side, basic education carries the expected sign and is statistically significant throughout.\(^\text{13}\) Although not statistically significant, it is interesting to note that both “secondary education” and “government consumption” carry signs that are in stark contrast to the signs postulated by the BLR approach.\(^\text{14}\) Also worth mentioning is that the CIS dummy variable (which assumes the value

\(^{13}\) However, if UNESCO or World Bank primary education figures are used instead, the coefficient becomes statistically insignificant. These are available from the author upon request.

\(^{14}\) If instead of government consumption, government expenditures is used, the relevant coefficient becomes statistically significant (and remains positive). These results are available from the author
of 1 for CIS countries, and zero otherwise) carries the expected sign and is statistically significant.

[Insert Table 4 about here]

Table 5 shows results for the cross-sectional dimension of the “Levine and Renelt specification.” Once again, the lack of statistically significant coefficients is evident. One exception is the coefficient on initial income, but it carries an unexpected positive sign and is statistically significant in the first two specifications. The sign for secondary education is also opposite to what we should expect from the BLR approach. Notice that the introduction of the CIS dummy (a step known to quiver most of the results in the literature) turns the coefficient on investment into statistical significance (a very rare result in the literature).

[Insert Table 5 about here]

Because the results above vigorously contradict the BLR findings, it is worth giving the data one more chance. This is accomplished by exploring the time-series dimension in the data in order to investigate whether in a shorter-run frame the BLR results would appear. The explicit cost of this choice is that the theoretical underpinnings that were guiding the previous findings do not hold here. The theory associated with the BLR equations focuses on the determinants of long-run economic growth and has very little to say about short-term fluctuations, making the findings that follow exploratory.

Table 6 shows how the Barro specification performs for a pooled ordinary least squares estimation on cross-section time-series annual data. The first noteworthy result is that the coefficient on initial income is always positive and (in one equation) statistically

upon request.

15 Notice that these results do not change in any meaningful way for the two BLR equations if these averages are calculated only for the recovery period. These are available from the author upon request.
significant (against the BLR expectation). Note that the CIS dummy variable still carries the expected sign and is statistically significant. The major changes, vis-à-vis the cross-sectional results above, are that the coefficient on basic education is not statistically significant and the coefficient on secondary education becomes statistically significant (and shows the expected positive sign).\(^\text{16}\)

Table 7 shows how the Levine and Renelt specification performs for cross-section time-series data. In light of our other results, it performs rather well and despite the very low Adjusted-R\(^2\)'s, only one coefficient carries the unexpected sign (namely the one for initial income). The coefficients on secondary education, investment and on the CIS dummy are all statistically significant and carry the expected signs.\(^\text{17}\)

Until now, the analysis has not fully taken into account the “transition features” previously mentioned. In order to allow for the typically V-shaped short-run output dynamics as well as for the effects of different policy choices without leaving the BLR framework we estimate the BLR equations for downturn and recovery phases separately.\(^\text{18}\)

\(^\text{16}\) The results for data re-based using any of the four different time scales discussed in the previous section are qualitatively similar to these. They are not reported for the sake of space but are available from the author upon request.

\(^\text{17}\) Notice that if UNESCO secondary education figures are used instead, the coefficient on secondary school and investment become statistically insignificant (and adding the CIS dummy makes only the coefficient on investment statistically significant). If World Bank secondary education figures are used instead, the coefficient on secondary school becomes statistically significant, but it carries a negative sign. These results are available from the author upon request.

\(^\text{18}\) I am thankful to an anonymous referee for these suggestions.
Tables 8 and 9 show how the Barro’s specification perform for the downturn and recovery phases, respectively. One first issue to notice is that the coefficients on secondary education and, surprisingly, the CIS dummy are statistically insignificant in the downturn as well as in the recovery. Also interesting is that that the coefficient of government consumption is always positive (although statistically significant only during the downturn phase) and that the coefficient on “basic education” is positive in the downturn (and often statistically significant) but negative in the recovery (also often statistically significant).

[Insert Tables 8 and 9 about here]

Finally, Tables 10 and 11 show how the Levine and Renelt’s specification perform for the downturn and recovery phases, respectively. One first observation is the complete absence of statistically significant coefficients for the recovery phase. Also notice that when one separates downturn from recovery, the CIS looses explanatory power considerably. Last, it is noteworthy that the coefficient on investment is positive and statistically significant in the downturn, but in the recovery it is never statistically significant.

[Insert Tables 10 and 11 about here]

6. CONCLUDING REMARKS

The objective of this paper was to discuss the limitations of the available methods for assessing the growth prospects transition economies face and, in doing so, investigate growth determinants for these economies. We surveyed the literature and identified the *BLR approach* as the favored methodology in use to estimate or forecast long-run growth rates in transition economies. Closer examination revealed many problems with the approach, to which the literature does not seem attentive. In particular, a crucial assumption remain untested, namely that the transition countries are structurally identical to market economies at similar levels of development. In this paper, we tested it and found little evidence in its support. As for the
BLR approach as a whole, we found that the coefficients in the BLR equations vary widely when estimated on transition countries’ data. There are indeed very few robust results. There is some evidence that higher initial incomes are associated with higher rates of economic growth and there is also some evidence that basic education and investment have also been positively associated with economic growth. However, these are clearly exceptions: the BLR approach does not perform well for the transition countries at all. This strengthens the case for making its costs and shortcomings explicit all the more pressing.
REFERENCES

International Monetary Fund [IMF], World Economic Outlook, Washington D.C., International Monetary Fund, October 1996.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Period</th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>Minimum</th>
<th>Maximum</th>
<th>No. Missing</th>
<th>Source(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GNP per capita PPP, US$</td>
<td>1989</td>
<td>5593</td>
<td>2111.8</td>
<td>1400</td>
<td>9200</td>
<td>0</td>
<td>De Melo, Denizer, Gelb, and Tenev, (1997)</td>
</tr>
<tr>
<td>GDP per capita, current dollars</td>
<td>1989</td>
<td>2668</td>
<td>1397.3</td>
<td>723</td>
<td>6052</td>
<td>0</td>
<td>WDI 2000 and ECE 1995</td>
</tr>
<tr>
<td>GDP per capita, current dollars</td>
<td>1990-1998</td>
<td>2135</td>
<td>1784.5</td>
<td>220</td>
<td>9851</td>
<td>5</td>
<td>WDI 2000, and ECE 1995</td>
</tr>
<tr>
<td>GDP growth, annual, %</td>
<td>1990-1998</td>
<td>-4.3</td>
<td>10.2</td>
<td>-52.6</td>
<td>12.7</td>
<td>0</td>
<td>EBRD</td>
</tr>
<tr>
<td>Gross primary school enrollment (1), %</td>
<td>1990-1995</td>
<td>94.8</td>
<td>9.1</td>
<td>76.0</td>
<td>118.0</td>
<td>94</td>
<td>UNESCO (1997)</td>
</tr>
<tr>
<td>Gross primary school enrollment (2), %</td>
<td>1990-1996</td>
<td>96.0</td>
<td>8.7</td>
<td>75.9</td>
<td>121.8</td>
<td>76</td>
<td>WDI 2000</td>
</tr>
<tr>
<td>Basic education gross enrollment, (3) %</td>
<td>1990-1998</td>
<td>91.6</td>
<td>5.1</td>
<td>78.8</td>
<td>99.8</td>
<td>11</td>
<td>UNICEF’s TransMONEE</td>
</tr>
<tr>
<td>Gross secondary school enrollment, (1) %</td>
<td>1990-1995</td>
<td>80.8</td>
<td>12.9</td>
<td>35.0</td>
<td>102.0</td>
<td>84</td>
<td>UNESCO (1997)</td>
</tr>
<tr>
<td>Gross secondary school enrollment, (2) %</td>
<td>1990-1997</td>
<td>85.1</td>
<td>11.8</td>
<td>37.5</td>
<td>103.8</td>
<td>76</td>
<td>WDI 2000</td>
</tr>
<tr>
<td>General secondary gross enrollment, (3) %</td>
<td>1990-1998</td>
<td>26.5</td>
<td>7.6</td>
<td>8.8</td>
<td>45.6</td>
<td>15</td>
<td>UNICEF’s TransMONEE</td>
</tr>
<tr>
<td>Gross domestic fixed investment, % GDP</td>
<td>1990-1998</td>
<td>20.7</td>
<td>7.0</td>
<td>1.6</td>
<td>44.3</td>
<td>25</td>
<td>WDI 2000, WDI, WDR</td>
</tr>
<tr>
<td>Population growth, annual, %</td>
<td>1990-1998</td>
<td>0.2</td>
<td>1.2</td>
<td>-4.9</td>
<td>6.9</td>
<td>0</td>
<td>WDI 2000</td>
</tr>
<tr>
<td>Government consumption, % GDP</td>
<td>1990-1998</td>
<td>17.6</td>
<td>5.0</td>
<td>5.9</td>
<td>29.4</td>
<td>16</td>
<td>WDI 2000, WDR</td>
</tr>
<tr>
<td>Government expenditure, % GDP</td>
<td>1990-1998</td>
<td>39.3</td>
<td>11.6</td>
<td>10.4</td>
<td>82.9</td>
<td>26</td>
<td>UNICEF’s TransMONEE</td>
</tr>
<tr>
<td>---------------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>PPP level</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estimated level of real GDP in 1998 (1989=100)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Albania</td>
<td>1400</td>
<td>-10.0</td>
<td>-27.7</td>
<td>-7.2</td>
<td>9.6</td>
<td>9.4</td>
<td>8.9</td>
</tr>
<tr>
<td>Bulgaria</td>
<td>5000</td>
<td>-9.1</td>
<td>-11.7</td>
<td>-7.3</td>
<td>1.5</td>
<td>1.8</td>
<td>2.1</td>
</tr>
<tr>
<td>Croatia</td>
<td>6371</td>
<td>-7.1</td>
<td>-21.1</td>
<td>-11.7</td>
<td>-8.0</td>
<td>5.9</td>
<td>6.8</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>8600</td>
<td>-1.2</td>
<td>-11.5</td>
<td>-3.3</td>
<td>0.6</td>
<td>3.2</td>
<td>6.4</td>
</tr>
<tr>
<td>Estonia</td>
<td>8900</td>
<td>-8.1</td>
<td>-13.6</td>
<td>-14.2</td>
<td>-9.0</td>
<td>-2.0</td>
<td>4.3</td>
</tr>
<tr>
<td>Macedonia</td>
<td>5394</td>
<td>-9.9</td>
<td>-7.0</td>
<td>-8.0</td>
<td>-9.1</td>
<td>2.9</td>
<td>1.5</td>
</tr>
<tr>
<td>Hungary</td>
<td>6810</td>
<td>-3.5</td>
<td>-11.9</td>
<td>-3.1</td>
<td>-0.6</td>
<td>2.9</td>
<td>1.5</td>
</tr>
<tr>
<td>Latvia</td>
<td>8590</td>
<td>2.9</td>
<td>-10.4</td>
<td>-34.9</td>
<td>-14.9</td>
<td>0.6</td>
<td>-0.8</td>
</tr>
<tr>
<td>Lithuania</td>
<td>6430</td>
<td>-5.0</td>
<td>-6.2</td>
<td>-21.3</td>
<td>-16.0</td>
<td>-9.5</td>
<td>3.5</td>
</tr>
<tr>
<td>Poland</td>
<td>5150</td>
<td>-11.6</td>
<td>-7.0</td>
<td>2.6</td>
<td>3.8</td>
<td>5.2</td>
<td>7.0</td>
</tr>
<tr>
<td>Romania</td>
<td>3470</td>
<td>-5.6</td>
<td>-12.9</td>
<td>-8.8</td>
<td>1.5</td>
<td>2.9</td>
<td>7.7</td>
</tr>
<tr>
<td>Slovakia</td>
<td>7600</td>
<td>-2.5</td>
<td>-14.6</td>
<td>-6.5</td>
<td>-3.7</td>
<td>4.9</td>
<td>6.9</td>
</tr>
<tr>
<td>Slovenia</td>
<td>9200</td>
<td>-4.7</td>
<td>-8.9</td>
<td>-5.3</td>
<td>2.8</td>
<td>5.3</td>
<td>4.1</td>
</tr>
<tr>
<td>CEEB</td>
<td>-6.6</td>
<td>-10.7</td>
<td>-3.6</td>
<td>0.4</td>
<td>3.9</td>
<td>5.5</td>
<td>4.0</td>
</tr>
<tr>
<td>Armenia</td>
<td>5530</td>
<td>-7.4</td>
<td>-17.1</td>
<td>-52.6</td>
<td>-14.8</td>
<td>5.4</td>
<td>6.9</td>
</tr>
<tr>
<td>Azerbaijan</td>
<td>4620</td>
<td>-11.7</td>
<td>-9.7</td>
<td>-22.6</td>
<td>-23.1</td>
<td>-19.7</td>
<td>-11.8</td>
</tr>
<tr>
<td>Belarus</td>
<td>7010</td>
<td>-3.0</td>
<td>-1.2</td>
<td>-9.6</td>
<td>-7.6</td>
<td>-12.6</td>
<td>-10.4</td>
</tr>
<tr>
<td>Georgia</td>
<td>5590</td>
<td>-12.4</td>
<td>-20.6</td>
<td>-44.8</td>
<td>-25.4</td>
<td>-11.4</td>
<td>2.4</td>
</tr>
<tr>
<td>Kazakhstan</td>
<td>5130</td>
<td>-0.4</td>
<td>-13.0</td>
<td>-9.2</td>
<td>-12.6</td>
<td>-8.2</td>
<td>0.5</td>
</tr>
<tr>
<td>Kyrgyzstan</td>
<td>3180</td>
<td>3.0</td>
<td>-5.0</td>
<td>-19.0</td>
<td>-16.0</td>
<td>-20.0</td>
<td>5.4</td>
</tr>
<tr>
<td>Moldova</td>
<td>4670</td>
<td>-2.4</td>
<td>-17.5</td>
<td>-29.1</td>
<td>-1.2</td>
<td>-31.2</td>
<td>-3.0</td>
</tr>
<tr>
<td>Russia</td>
<td>7720</td>
<td>-4.0</td>
<td>-5.0</td>
<td>-14.5</td>
<td>-8.7</td>
<td>-12.7</td>
<td>-4.1</td>
</tr>
<tr>
<td>Tajikistan</td>
<td>3010</td>
<td>-1.6</td>
<td>-7.1</td>
<td>-29.0</td>
<td>-11.0</td>
<td>-18.9</td>
<td>-12.5</td>
</tr>
<tr>
<td>Turkmenistan</td>
<td>4230</td>
<td>-2.0</td>
<td>-4.7</td>
<td>-5.1</td>
<td>-10.0</td>
<td>-18.8</td>
<td>-8.2</td>
</tr>
<tr>
<td>Ukraine</td>
<td>5680</td>
<td>-3.4</td>
<td>-11.6</td>
<td>-13.7</td>
<td>-14.2</td>
<td>-23.0</td>
<td>-12.2</td>
</tr>
<tr>
<td>Uzbekistan</td>
<td>2740</td>
<td>1.6</td>
<td>-0.5</td>
<td>-11.1</td>
<td>-2.3</td>
<td>-4.2</td>
<td>-0.9</td>
</tr>
<tr>
<td>C I S</td>
<td>-3.7</td>
<td>-6.0</td>
<td>-14.2</td>
<td>-9.3</td>
<td>-13.8</td>
<td>-5.2</td>
<td>-3.5</td>
</tr>
<tr>
<td>All</td>
<td>-3.0</td>
<td>-8.1</td>
<td>-9.3</td>
<td>-5.0</td>
<td>-6.0</td>
<td>-0.5</td>
<td>-0.2</td>
</tr>
</tbody>
</table>

Source: see text.
Table 3
Correlation matrix (n=24)

<table>
<thead>
<tr>
<th></th>
<th>Initial Income</th>
<th>Growth</th>
<th>Basic education</th>
<th>Secondary Education</th>
<th>Government Consumption</th>
<th>Government Expenditures</th>
<th>CIS dummy</th>
<th>Investment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Growth</td>
<td>0.3811</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic education</td>
<td>0.3378</td>
<td>0.6915</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Secondary Education</td>
<td>-0.1464</td>
<td>-0.1870</td>
<td>-0.1287</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Government Consumption</td>
<td>0.4126</td>
<td>0.3682</td>
<td>0.1348</td>
<td>-0.1941</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Government Expenditures</td>
<td>0.3223</td>
<td>0.6009</td>
<td>0.4905</td>
<td>-0.3569</td>
<td>0.4499</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIS dummy</td>
<td>-0.3906</td>
<td>-0.6389</td>
<td>-0.5011</td>
<td>0.2319</td>
<td>-0.2249</td>
<td>-0.4622</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Investment</td>
<td>0.2473</td>
<td>0.3099</td>
<td>0.4591</td>
<td>-0.0873</td>
<td>0.3446</td>
<td>0.3327</td>
<td>0.0019</td>
<td></td>
</tr>
<tr>
<td>Population growth</td>
<td>-0.5327</td>
<td>-0.1450</td>
<td>-0.3084</td>
<td>0.1333</td>
<td>-0.0288</td>
<td>-0.1077</td>
<td>0.5196</td>
<td>0.1355</td>
</tr>
</tbody>
</table>
Table 4
Cross sectional dimension, Barro specification
Dependent variable is GDP growth.

<table>
<thead>
<tr>
<th>Regression</th>
<th>Constant</th>
<th>Initial Income</th>
<th>Basic education</th>
<th>Secondary Education</th>
<th>Government Consumption</th>
<th>CIS dummy</th>
<th>Adj. R2</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression 1</td>
<td>-7.78 ***</td>
<td>-1.59</td>
<td>.0011 **</td>
<td>.0004</td>
<td></td>
<td></td>
<td></td>
<td>0.1222</td>
</tr>
<tr>
<td>Regression 2</td>
<td>-60.17 ***</td>
<td>11.27</td>
<td>.0005</td>
<td>.0004</td>
<td>.59 ***</td>
<td>.12</td>
<td></td>
<td>0.4671</td>
</tr>
<tr>
<td>Regression 3</td>
<td>-57.51 ***</td>
<td>12.68</td>
<td>.0004</td>
<td>.0004</td>
<td>.58 ***</td>
<td>.13</td>
<td>-.063</td>
<td>.063</td>
</tr>
<tr>
<td>Regression 4</td>
<td>-60.89 ***</td>
<td>12.01</td>
<td>.0002</td>
<td>.0005</td>
<td>.589 ***</td>
<td>.12</td>
<td>-.055</td>
<td>.065</td>
</tr>
<tr>
<td>Regression 5</td>
<td>-47.09 ***</td>
<td>11.85</td>
<td>.0001</td>
<td>.0005</td>
<td>.448 ***</td>
<td>.11</td>
<td>-.018</td>
<td>.064</td>
</tr>
</tbody>
</table>

Notes: *** denotes statistically significant at the 1% level, ** denotes statistically significant at the 5% level, * denotes statistically significant at the 10% level. In the first rows are the coefficients, and below are standard errors (corrected for heteroskedasticity).
Table 5
Cross sectional dimension, Levine and Renelt specification
Dependent variable is GDP growth.

<table>
<thead>
<tr>
<th></th>
<th>Constant</th>
<th>Initial Income</th>
<th>Population growth</th>
<th>Secondary Education</th>
<th>Investment</th>
<th>CIS dummy</th>
<th>Adj. R²</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression 1</td>
<td>-7.53 ***</td>
<td>.001 *</td>
<td>-.217</td>
<td>.829</td>
<td></td>
<td></td>
<td>0.0846</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>1.97</td>
<td>.0005</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regression 2</td>
<td>-4.97</td>
<td>.001 *</td>
<td>-.085</td>
<td>-.095</td>
<td>.0005</td>
<td></td>
<td>0.0678</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>3.16</td>
<td>.0005</td>
<td>.811</td>
<td>.082</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regression 3</td>
<td>-8.49 *</td>
<td>.008</td>
<td>.041</td>
<td>-.075</td>
<td>.161</td>
<td></td>
<td>0.0430</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>4.29</td>
<td>.0005</td>
<td>1.23</td>
<td>.072</td>
<td>.136</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regression 4</td>
<td>-7.02 **</td>
<td>.0005</td>
<td>1.57</td>
<td>-.007</td>
<td>.163 *</td>
<td>-5.54 ***</td>
<td>0.4405</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>3.15</td>
<td>.0003</td>
<td>1.16</td>
<td>.074</td>
<td>.092</td>
<td>1.64</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: *** denotes statistically significant at the 1% level, ** denotes statistically significant at the 5% level, * denotes statistically significant at the 10% level. In the first rows are the coefficients, and below are standard errors (corrected for heteroskedasticity).
Table 6
Panel dimension, Barro specification
Dependent variable is GDP growth.

<table>
<thead>
<tr>
<th>Regression</th>
<th>Constant</th>
<th>Initial Income</th>
<th>Basic education</th>
<th>Secondary Education</th>
<th>Government Consumption</th>
<th>CIS dummy</th>
<th>Adj. R2</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression 1</td>
<td>-5.79 ****</td>
<td>1.22</td>
<td>.0008 **</td>
<td>.0003</td>
<td></td>
<td></td>
<td>0.0154</td>
<td>195</td>
</tr>
<tr>
<td>Regression 2</td>
<td>-32.87**</td>
<td>18.19</td>
<td>.0004</td>
<td>.301</td>
<td>.0003</td>
<td>.203</td>
<td>0.0399</td>
<td>184</td>
</tr>
<tr>
<td>Regression 3</td>
<td>-32.16 *</td>
<td>18.46</td>
<td>.0007</td>
<td>.258</td>
<td>.0004</td>
<td>.202</td>
<td>.111</td>
<td>.084</td>
</tr>
<tr>
<td>Regression 4</td>
<td>-33.53 *</td>
<td>19.12</td>
<td>.0006</td>
<td>.254</td>
<td>.0004</td>
<td>.203</td>
<td>.176 **</td>
<td>.084</td>
</tr>
<tr>
<td>Regression 5</td>
<td>-17.72</td>
<td>21.28</td>
<td>.0003</td>
<td>.114</td>
<td>.0004</td>
<td>.222</td>
<td>.184 **</td>
<td>.083</td>
</tr>
</tbody>
</table>

Notes: *** denotes statistically significant at the 1% level, ** denotes statistically significant at the 5% level, * denotes statistically significant at the 10% level. In the first rows are the coefficients, and below are standard errors (corrected for heteroskedasticity).
Table 7
Panel dimension, Levine and Renelt specification
Dependent variable is GDP growth.

<table>
<thead>
<tr>
<th>Regression</th>
<th>Constant</th>
<th>Initial Income</th>
<th>Population growth</th>
<th>Secondary Education</th>
<th>Investment</th>
<th>CIS dummy</th>
<th>Adj. R2</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression 1</td>
<td>-5.36***</td>
<td>1.18</td>
<td>.0007 **</td>
<td>-.736</td>
<td>.543</td>
<td></td>
<td>0.0169</td>
<td>195</td>
</tr>
<tr>
<td>Regression 2</td>
<td>-9.143***</td>
<td>2.704</td>
<td>.001***</td>
<td>-.971*</td>
<td>.127</td>
<td>.0003</td>
<td>0.0342</td>
<td>186</td>
</tr>
<tr>
<td>Regression 3</td>
<td>-14.29***</td>
<td>3.659</td>
<td>.0007 *</td>
<td>-.835</td>
<td>.173*</td>
<td>.0003</td>
<td>0.0483</td>
<td>170</td>
</tr>
<tr>
<td>Regression 4</td>
<td>-10.876***</td>
<td>3.612</td>
<td>.001</td>
<td>-.109</td>
<td>.175*</td>
<td>.0003</td>
<td>0.0861</td>
<td>170</td>
</tr>
</tbody>
</table>

Notes: *** denotes statistically significant at the 1% level, ** denotes statistically significant at the 5% level, * denotes statistically significant at the 10% level. In the first rows are the coefficients, and below are standard errors (corrected for heteroskedasticity).
Table 8
Panel dimension, Barro specification, data for downturn only.
Dependent variable is GDP growth.

<table>
<thead>
<tr>
<th>Regression</th>
<th>Constant</th>
<th>Initial Income</th>
<th>Basic Education</th>
<th>Secondary Education</th>
<th>Government Consumption</th>
<th>CIS dummy</th>
<th>Adj. R2</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression 1</td>
<td>-12.67***</td>
<td>.0007</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.0042</td>
<td>106</td>
</tr>
<tr>
<td>Regression 2</td>
<td>-44.06 **</td>
<td>19.642</td>
<td>.0002</td>
<td>.356</td>
<td></td>
<td></td>
<td>0.0219</td>
<td>104</td>
</tr>
<tr>
<td>Regression 3</td>
<td>-45.62**</td>
<td>20.40</td>
<td>.00006</td>
<td>.397 *</td>
<td>-.059</td>
<td></td>
<td>0.0184</td>
<td>100</td>
</tr>
<tr>
<td>Regression 4</td>
<td>-52.91 **</td>
<td>21.67</td>
<td>-.00004</td>
<td>.425 *</td>
<td>-.044</td>
<td>.276 *</td>
<td></td>
<td>0.0330</td>
</tr>
<tr>
<td>Regression 5</td>
<td>-51.41**</td>
<td>22.96</td>
<td>.0008</td>
<td>.412 *</td>
<td>-.039</td>
<td>.273 *</td>
<td>-.436</td>
<td>0.0221</td>
</tr>
</tbody>
</table>

Notes: *** denotes statistically significant at the 1% level, ** denotes statistically significant at the 5% level, * denotes statistically significant at the 10% level. In the first rows are the coefficients, and below are standard errors (corrected for heteroskedasticity).
Table 9
Panel dimension, Barro specification, data for recovery only.
Dependent variable is GDP growth.

<table>
<thead>
<tr>
<th>Regression</th>
<th>Constant</th>
<th>Initial Income</th>
<th>Basic Education</th>
<th>Secondary Education</th>
<th>Government Consumption</th>
<th>CIS dummy</th>
<th>Adj. R2</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression 1</td>
<td>5.18***</td>
<td>.491</td>
<td>-0.0002*</td>
<td></td>
<td></td>
<td></td>
<td>0.0054</td>
<td>89</td>
</tr>
<tr>
<td>Regression 2</td>
<td>17.45**</td>
<td>7.358</td>
<td>.0001</td>
<td>-.141 *</td>
<td>.0819</td>
<td></td>
<td>0.0276</td>
<td>80</td>
</tr>
<tr>
<td>Regression 3</td>
<td>16.57 **</td>
<td>7.51</td>
<td>.0001</td>
<td>-.149 *</td>
<td>.0815</td>
<td>.0567</td>
<td>0.0395</td>
<td>80</td>
</tr>
<tr>
<td>Regression 4</td>
<td>17.94**</td>
<td>7.601</td>
<td>.0001</td>
<td>-.166**</td>
<td>.0811</td>
<td>.0472</td>
<td>.038</td>
<td>78</td>
</tr>
<tr>
<td>Regression 5</td>
<td>17.12 *</td>
<td>9.705</td>
<td>.0001</td>
<td>-.159</td>
<td>.098</td>
<td>.0472</td>
<td>.043</td>
<td>.194</td>
</tr>
</tbody>
</table>

Notes: *** denotes statistically significant at the 1% level, ** denotes statistically significant at the 5% level, * denotes statistically significant at the 10% level. In the first rows are the coefficients, and below are standard errors (corrected for heteroskedasticity).
Table 10
Panel dimension, Levine and Renelt specification, data for downturn only. Dependent variable is GDP growth.

<table>
<thead>
<tr>
<th>Regression</th>
<th>Constant</th>
<th>Initial Income</th>
<th>Population Growth</th>
<th>Secondary Education</th>
<th>Investment</th>
<th>CIS dummy</th>
<th>Adj. R²</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression 1</td>
<td>-12.67***</td>
<td>1.52</td>
<td>.0007</td>
<td>0.0005</td>
<td>0.0042</td>
<td>106</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regression 2</td>
<td>-12.62***</td>
<td>1.46</td>
<td>.0007</td>
<td>-0.0651</td>
<td>.0005</td>
<td>0.0007</td>
<td>-0.0054</td>
<td>106</td>
</tr>
<tr>
<td>Regression 3</td>
<td>-12.23***</td>
<td>3.54</td>
<td>.0008</td>
<td>.0007</td>
<td>-0.014</td>
<td>-0.0144</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Regression 4</td>
<td>-14.26***</td>
<td>4.49</td>
<td>.00003</td>
<td>-1.58</td>
<td>-0.079</td>
<td>.267 *</td>
<td>0.0268</td>
<td>87</td>
</tr>
<tr>
<td>Regression 5</td>
<td>-13.17***</td>
<td>4.34</td>
<td>-.00038</td>
<td>-1.24</td>
<td>-0.063</td>
<td>.301 **</td>
<td>-2.37</td>
<td>0.0287</td>
</tr>
</tbody>
</table>

Notes: *** denotes statistically significant at the 1% level, ** denotes statistically significant at the 5% level, * denotes statistically significant at the 10% level. In the first rows are the coefficients, and below are standard errors (corrected for heteroskedasticity).
Table 11
Panel dimension, Levine and Renelt specification, data for recovery only. Dependent variable is GDP growth.

<table>
<thead>
<tr>
<th>Regression</th>
<th>Constant</th>
<th>Initial Income</th>
<th>Population growth</th>
<th>Secondary Education</th>
<th>Investment</th>
<th>CIS dummy</th>
<th>Adj. R2</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression 1</td>
<td>5.18***</td>
<td>-.0001*</td>
<td>.491</td>
<td>.0001</td>
<td>.0001</td>
<td>0.0054</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>Regression 2</td>
<td>5.18***</td>
<td>-.0001</td>
<td>.0001</td>
<td>.012</td>
<td>.324</td>
<td>-0.0061</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>Regression 3</td>
<td>3.31***</td>
<td>-.0001</td>
<td>1.21</td>
<td>.063</td>
<td>.035</td>
<td>.0061</td>
<td>.37</td>
<td>86</td>
</tr>
<tr>
<td>Regression 4</td>
<td>3.09 *</td>
<td>-.0001</td>
<td>1.75</td>
<td>.098</td>
<td>.39</td>
<td>.055</td>
<td>.027</td>
<td>-0.0031</td>
</tr>
<tr>
<td>Regression 5</td>
<td>2.66</td>
<td>-.0001</td>
<td>1.76</td>
<td>.007</td>
<td>.426</td>
<td>.055</td>
<td>.031</td>
<td>.67</td>
</tr>
</tbody>
</table>

Notes: *** denotes statistically significant at the 1% level, ** denotes statistically significant at the 5% level, * denotes statistically significant at the 10% level. In the first rows are the coefficients, and below are standard errors (corrected for heteroskedasticity).
2008
B01-08 Euro-Diplomatie durch gemeinsame „Wirtschaftsregierung“ Martin Seidel

2007
B03-07 Löhne und Steuern im Systemwettbewerb der Mitgliedstaaten der Europäischen Union Martin Seidel
B02-07 Konzolidierung und Reform der Europäischen Union Martin Seidel
B01-07 The Ratification of European Treaties - Legal and Constitutional Basis of a European Referendum. Martin Seidel

2006
B03-06 Financial Frictions, Capital Reallocation, and Aggregate Fluctuations Jürgen von Hagen, Haiping Zhang
B02-06 Financial Openness and Macroeconomic Volatility Jürgen von Hagen, Haiping Zhang
B01-06 A Welfare Analysis of Capital Account Liberalization Jürgen von Hagen, Haiping Zhang

2005
B11-05 Das Kompetenz- und Entscheidungssystem des Vertrages von Rom im Wandel seiner Funktion und Verfassung Martin Seidel
B10-05 Die Schutzklauseln der Beitrittsverträge Martin Seidel
B09-05 Measuring Tax Burdens in Europe Guntram B. Wolff
B08-05 Remittances as Investment in the Absence of Altruism Gabriel González-König
B07-05 Economic Integration in a Multicone World? Christian Volpe Martincus, Jennifer Pédussel Wu
B06-05 Banking Sector (Under?)Development in Central and Eastern Europe Jürgen von Hagen, Valeriya Dinger
B05-05 Regulatory Standards Can Lead to Predation Stefan Lutz
B04-05 Währungspolitik als Sozialpolitik Martin Seidel
B03-05 Public Education in an Integrated Europe: Studying to Migrate and Teaching to Stay? Panu Poutvaara
B02-05 Voice of the Diaspora: An Analysis of Migrant Voting Behavior Jan Fidrmuc, Orla Doyle
B01-05 Macroeconomic Adjustment in the New EU Member States Jürgen von Hagen, Iulia Traistaru

2004
B33-04 The Effects of Transition and Political Instability On Foreign Direct Investment Inflows: Central Europe and the Balkans Josef C. Brada, Ali M. Kutan, Taner M. Yigit
B32-04 The Choice of Exchange Rate Regimes in Developing Countries: A Multinominal Panal Analysis Jürgen von Hagen, Jizhong Zhou
B31-04 Fear of Floating and Fear of Pegging: An Empirical Analysis of De Facto Exchange Rate Regimes in Developing Countries Jürgen von Hagen, Jizhong Zhou
B30-04 Der Vollzug von Gemeinschaftsrecht über die Mitgliedstaaten und seine Rolle für die EU und den Beitrittsprozess Martin Seidel
B29-04 Deutschlands Wirtschaft, seine Schulden und die Unzulänglichkeiten der einheitlichen Geldpolitik im Eurosystem Dieter Spethmann, Otto Steiger
B28-04 Fiscal Crises in U.S. Cities: Structural and Non-structural Causes Guntram B. Wolff
B27-04 Firm Performance and Privatization in Ukraine Galyna Grygorenko, Stefan Lutz
B26-04 Analyzing Trade Opening in Ukraine: Effects of a Customs Union with the EU Oksana Harbuzyuk, Stefan Lutz
B25-04 Exchange Rate Risk and Convergence to the Euro Lucjan T. Orlowski
B24-04 The Endogeneity of Money and the Eurosystem Otto Steiger
B23-04 Which Lender of Last Resort for the Eurosystem? Otto Steiger
B21-04 The Effectiveness of Subsidies Revisited: Accounting for Wage and Employment Effects in Business R+D Volker Reinthaler, Guntram B. Wolff
B20-04 Money Market Pressure and the Determinants of Banking Crises Jürgen von Hagen, Tai-kuang Ho
B19-04 Die Stellung der Europäischen Zentralbank nach dem Verfassungsvertrag Martin Seidel
Transmission Channels of Business Cycles Synchronization in an Enlarged EMU
Iulia Traistaru

Foreign Exchange Regime, the Real Exchange Rate and Current Account Sustainability: The Case of Turkey
Sübidey Togan, Hasan Ersel

Harry P. Bowen, Jennifer Pédussel Wu

Do Economic Integration and Fiscal Competition Help to Explain Local Patterns?
Christian Volpe Martincus

Euro Adoption and Maastricht Criteria: Rules or Discretion?
Jiri Jonas

The Role of Electoral and Party Systems in the Development of Fiscal Institutions in the Central and Eastern European Countries
Sami Yläoutinen

Measuring and Explaining Levels of Regional Economic Integration
Jennifer Pédussel Wu

Economic Integration and Location of Manufacturing Activities: Evidence from MERCOSUR
Pablo Sanguinetti, Iulia Traistaru, Christian Volpe Martincus

Economic Integration and Industry Location in Transition Countries
Laura Resmini

Testing Creditor Moral Hazard in Sovereign Bond Markets: A Unified Theoretical Approach and Empirical Evidence
Ayse Y. Evrensel, Ali M. Kutan

European Integration, Productivity Growth and Real Convergence
Tuner M. Yigit, Ali M. Kutan

The Contribution of Income, Social Capital, and Institutions to Human Well-being in Africa
Mina Baliamoune-Lutz, Stefan H. Lutz

Rural Urban Inequality in Africa: A Panel Study of the Effects of Trade Liberalization and Financial Deepening
Mina Baliamoune-Lutz, Stefan H. Lutz

Money Rules for the Eurozone Candidate Countries
Lucjan T. Orlowski

Who is in Favor of Enlargement? Determinants of Support for EU Membership in the Candidate Countries’ Referenda
Orla Doyle, Jan Fidrmuc

Over- and Underbidding in Central Bank Open Market Operations Conducted as Fixed Rate Tender
Ulrich Bindseil

Total Factor Productivity and Economic Freedom Implications for EU Enlargement
Ronald L. Moomaw, Euy Seok Yang

The Performance of the Euribor Futures Market: Efficiency and the Impact of ECB Policy Announcements (Electronic Version of International Finance)
Kerstin Bernoth, Juergen von Hagen

How Flexible are Wages in EU Accession Countries?
Anna Lara, Iulia Traistaru

Monetary Policy Reaction Functions: ECB versus Bundesbank
Bernd Hayo, Boris Hofmann

Economic Integration and Manufacturing Concentration Patterns: Evidence from Mercosur
Iulia Traistaru, Christian Volpe Martincus

Reformzwänge innerhalb der EU angesichts der Osterweiterung
Martin Seidel

Reputation Flows: Contractual Disputes and the Channels for Inter-Firm Communication
William Pyle

Urban Primacy, Gigantism, and International Trade: Evidence from Asia and the Americas
Ronald L. Moomaw, Mohammed A. Alwosabi

An Empirical Analysis of Competing Explanations of Urban Primacy Evidence from Asia and the Americas
Ronald L. Moomaw, Mohammed A. Alwosabi
B18-03 The Effects of Regional and Industry-Wide FDI Spillovers on Export of Ukrainian Firms
Stefan H. Lutz, Oleksandr Talavera, Sang-Min Park

B17-03 Determinants of Inter-Regional Migration in the Baltic States
Mihails Hazans

B16-03 South-East Europe: Economic Performance, Perspectives, and Policy Challenges
Iulia Traistaru, Jürgen von Hagen

B15-03 Employed and Unemployed Search: The Marginal Willingness to Pay for Attributes in Lithuania, the US and the Netherlands
Jos van Ommeren, Mihails Hazans

B14-03 FDI Spillovers: Some International Evidence
Charles Goodhart, Boris Hofmann

B13-03 The IS Curve and the Transmission of Monetary Policy: Is there a Puzzle?
Charles Goodhart, Boris Hofmann

B12-03 What Makes Regions in Eastern Europe Catching Up? The Role of Foreign Investment, Human Resources, and Geography
Gabriele Tondl, Goran Vuksic

B11-03 The Effects of Regional and Industry-Wide FDI Spillovers on Export of Ukrainian Firms
Stefan H. Lutz, Oleksandr Talavera, Sang-Min Park

B10-03 Foreign Direct Investment and Perceptions of Vulnerability to Foreign Exchange Crises: Evidence from Transition Economies
Josef C. Brada, Vladimir Tomsik

B09-03 The European Central Bank and the Eurosystem: An Analysis of the Missing Central Monetary Institution in European Monetary Union
Gunnar Heinsohn, Otto Steiger

B08-03 The Determination of Capital Controls: Which Role Do Exchange Rate Regimes Play?
Jürgen von Hagen, Jizhong Zhou

B07-03 Nach Nizza und Stockholm: Stand des Binnenmarktes und Prioritäten für die Zukunft
Martin Seidel

B06-03 Fiscal Discipline and Growth in Euroland. Experiences with the Stability and Growth Pact
Jürgen von Hagen

B05-03 Reconsidering the Evidence: Are Eurozone Business Cycles Converging?
Michael Massmann, James Mitchell

B04-03 Do Ukrainian Firms Benefit from FDI?
Stefan H. Lutz, Oleksandr Talavera

B03-03 Europäische Steuerkoordination und die Schweiz
Stefan H. Lutz

B02-03 Commuting in the Baltic States: Patterns, Determinants, and Gains
Mihails Hazans

B01-03 Die Wirtschafts- und Währungsunion im rechtlichen und politischen Gefüge der Europäischen Union
Martin Seidel

2002

B30-02 An Adverse Selection Model of Optimal Unemployment Assurance
Marcus Hagedorn, Ashok Kaul, Tim Mennel

B29B-02 Trade Agreements as Self-protection
Jennifer Pédussel Wu

B29A-02 Growth and Business Cycles with Imperfect Credit Markets
Debajyoti Chakrabarty

B28-02 Inequality, Politics and Economic Growth
Debajyoti Chakrabarty

B27-02 Poverty Traps and Growth in a Model of Endogenous Time Preference
Debajyoti Chakrabarty

B26-02 Monetary Convergence and Risk Premiums in the EU Candidate Countries
Lucjan T. Orlowski

B25-02 Trade Policy: Institutional Vs. Economic Factors
Stefan Lutz

B24-02 The Effects of Quotas on Vertical Intra-industry Trade
Stefan Lutz

B23-02 Legal Aspects of European Economic and Monetary Union
Martin Seidel

B22-02 Der Staat als Lender of Last Resort - oder: Die Achillesverse des Eurosystems
Otto Steiger

B21-02 Nominal and Real Stochastic Convergence Within the Transition Economies and to the European Union: Evidence from Panel Data
Ali M. Kutan, Taner M. Yigit

B20-02 The Impact of News, Oil Prices, and International Spillovers on Russian Financial Markets
Bernd Hayo, Ali M. Kutan
East Germany: Transition with Unification, Experiments and Experiences
Jürgen von Hagen, Rolf R. Strauch, Guntram B. Wolff

Regional Specialization and Employment Dynamics in Transition Countries
Iulia Traistaru, Guntram B. Wolff

Specialization and Growth Patterns in Border Regions of Accession Countries
Laura Resmini

Regional Specialization and Concentration of Industrial Activity in Accession Countries
Iulia Traistaru, Peter Nijkamp, Simonetta Longhi

Does Broad Money Matter for Interest Rate Policy?
Matthias Brückner, Andreas Schaber

The Long and Short of It: Global Liberalization, Poverty and Inequality
Christian E. Weller, Adam Hersch

De Facto and Official Exchange Rate Regimes in Transition Economies
Jürgen von Hagen, Jizhong Zhou

Argentina: The Anatomy of A Crisis
Jiri Jonas

The Eurosystem and the Art of Central Banking
Gunnar Heinsohn, Otto Steiger

National Origins of European Law: Towards an Autonomous System of European Law?
Martin Seidel

Monetary Policy in the Euro Area - Lessons from the First Years
Volker Clausen, Bernd Hayo

Has the Link Between the Spot and Forward Exchange Rates Broken Down? Evidence From Rolling Cointegration Tests
Ali M. Kutan, Su Zhou

Perspectives of the Erweiterung der Europäischen Union
Martin Seidel

Is There Asymmetry in Forward Exchange Rate Bias? Multi-Country Evidence
Su Zhou, Ali M. Kutan

Real and Monetary Convergence Within the European Union and Between the European Union and Candidate Countries: A Rolling Cointegration Approach
Josef C. Brada, Ali M. Kutan, Su Zhou

Asymmetric Monetary Policy Effects in EMU
Volker Clausen, Bernd Hayo

The Choice of Exchange Rate Regimes: An Empirical Analysis for Transition Economies
Jürgen von Hagen, Jizhong Zhou

The Euro System and the Federal Reserve System Compared: Facts and Challenges
Karlheinz Ruckriegel, Franz Seitz

Does Inflation Targeting Matter?
Manfred J. M. Neumann, Jürgen von Hagen

2001

Is Kazakhstan Vulnerable to the Dutch Disease?
Karlygash Kuralbayeva, Ali M. Kutan, Michael L. Wyzan

Political Economy of the Nice Treaty: Rebalancing the EU Council. The Future of European Agricultural Policies
Deutsch-Französisches Wirtschaftspolitisches Forum

Investor Panic, IMF Actions, and Emerging Stock Market Returns and Volatility: A Panel Investigation
Bernd Hayo, Ali M. Kutan

Regional Effects of Terrorism on Tourism: Evidence from Three Mediterranean Countries
Konstantinos Drakos, Ali M. Kutan

Monetary Convergence of the EU Candidates to the Euro: A Theoretical Framework and Policy Implications
Lucjan T. Orlowski

Disintegration and Trade
Jarko and Jan Fidrmuc

Migration and Adjustment to Shocks in Transition Economies
Jan Fidrmuc

Strategic Delegation and International Capital Taxation
Matthias Brückner

Balkan and Mediterranean Candidates for European Union Membership: The Convergence of Their Monetary Policy With That of the European Central Bank
Josef C. Brada, Ali M. Kutan

An Empirical Inquiry of the Efficiency of Intergovernmental Transfers for Water Projects Based on the WRDA Data
Anna Rubinichik-Pessach

Detrending and the Money-Output Link: International Evidence
R.W. Hafer, Ali M. Kutan
<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monetary Policy in Unknown Territory. The European Central Bank in the Early Years</td>
<td>Jürgen von Hagen, Matthias Brückner</td>
</tr>
<tr>
<td>Executive Authority, the Personal Vote, and Budget Discipline in Latin American and Carribean Countries</td>
<td>Mark Hallerberg, Patrick Marier</td>
</tr>
<tr>
<td>Sources of Inflation and Output Fluctuations in Poland and Hungary: Implications for Full Membership in the European Union</td>
<td>Selahattin Dibooglu, Ali M. Kutan</td>
</tr>
<tr>
<td>Programs Without Alternative: Public Pensions in the OECD</td>
<td>Christian E. Weller</td>
</tr>
<tr>
<td>Formal Fiscal Restraints and Budget Processes As Solutions to a Deficit and Spending Bias in Public Finances - U.S. Experience and Possible Lessons for EMU</td>
<td>Rolf R. Strauch, Jürgen von Hagen</td>
</tr>
<tr>
<td>German Public Finances: Recent Experiences and Future Challenges</td>
<td>Jürgen von Hagen, Rolf R. Strauch</td>
</tr>
<tr>
<td>The Impact of Eastern Enlargement On EU-Labour Markets. Pensions Reform Between Economic and Political Problems</td>
<td>Deutsch-Französisches Wirtschaftspolitisches Forum</td>
</tr>
<tr>
<td>Inflationary Performance in a Monetary Union With Large Wage Setters</td>
<td>Lila Cavallar</td>
</tr>
<tr>
<td>Democracy in Transition Economies: Grease or Sand in the Wheels of Growth?</td>
<td>Jan Fidrmuc</td>
</tr>
<tr>
<td>The Functioning of Economic Policy Coordination</td>
<td>Jürgen von Hagen, Susanne Mundschen</td>
</tr>
<tr>
<td>The Convergence of Monetary Policy Between Candidate Countries and the European Union</td>
<td>Josef C. Brada, Ali M. Kutan</td>
</tr>
<tr>
<td>Opposites Attract: The Case of Greek and Turkish Financial Markets</td>
<td>Konstantinos Drakos, Ali M. Kutan</td>
</tr>
<tr>
<td>Trade Rules and Global Governance: A Long Term Agenda. The Future of Banking.</td>
<td>Deutsch-Französisches Wirtschaftspolitisches Forum</td>
</tr>
<tr>
<td>The Determination of Unemployment Benefits</td>
<td>Rafael di Tella, Robert J. MacCulloch</td>
</tr>
<tr>
<td>Preferences Over Inflation and Unemployment: Evidence from Surveys of Happiness</td>
<td>Michele Fratianni, Jürgen von Hagen, Etienne Farvaque, Gael Lagadec</td>
</tr>
<tr>
<td>The Konstanz Seminar on Monetary Theory and Policy at Thirty</td>
<td>Etienne Farvaque, Gael Lagadec</td>
</tr>
<tr>
<td>Divided Boards: Partisanship Through Delegated Monetary Policy</td>
<td>Jürgen von Hagen, Claudia Keser Martin Seidel</td>
</tr>
<tr>
<td>Breakin-up a Nation, From the Inside</td>
<td>Etienne Farvaque, Jens Hölscher</td>
</tr>
<tr>
<td>Income Dynamics and Stability in the Transition Process, general Reflections applied to the Czech Republic</td>
<td>Karl-Martin Ehrhart, Roy Gardner, Jürgen von Hagen, Claudia Keser Martin Seidel</td>
</tr>
<tr>
<td>Budget Processes: Theory and Experimental Evidence</td>
<td>Christa Randzio-Plath, Tomasso Padoa-Schioppa</td>
</tr>
<tr>
<td>Rückführung der Landwirtschaftspolitik in die Verantwortung der Mitgliedsstaaten? - Rechts- und Verfassungsfragen des Gemeinschaftsrechts</td>
<td>Jürgen von Hagen, Ralf Hepp</td>
</tr>
<tr>
<td>The European Central Bank: Independence and Accountability</td>
<td>Nauro F. Campos</td>
</tr>
</tbody>
</table>
Rechtsetzung und Rechtsangleichung als Folge der Einheitlichen Europäischen Währung

Martin Seidel

A Dynamic Approach to Inflation Targeting in Transition Economies

Lucjan T. Orlowski

The Importance of Domestic Political Institutions: Why and How Belgium Qualified for EMU

Marc Hallerberg

Rational Institutions Yield Hysteresis

Rafael Di Tella, Robert MacCulloch

The Effectiveness of Self-Protection Policies for Safeguarding Emerging Market Economies from Crises

Kenneth Kletzer

Financial Supervision and Policy Coordination in The EMU

Deutsch-Französisches Wirtschaftspolitisches Forum

The Demand for Money in Austria

Bernd Hayo

Liberalization, Democracy and Economic Performance during Transition

Jan Fidrmuc

A New Political Culture in The EU - Democratic Accountability of the ECB

Christa Randzio-Plath

Integration, Disintegration and Trade in Europe: Evolution of Trade Relations during the 1990’s

Jarko Fidrmuc, Jan Fidrmuc

Inflation Bias and Productivity Shocks in Transition Economies: The Case of the Czech Republic

Josef C. Brada, Arthur E. King, Ali M. Kutan

Monetary Union and Fiscal Federalism

Kenneth Kletzer, Jürgen von Hagen

Skills, Labour Costs, and Vertically Differentiated Industries: A General Equilibrium Analysis

Stefan Lutz, Alessandro Turrini

Micro and Macro Determinants of Public Support for Market Reforms in Eastern Europe

Bernd Hayo

What Makes a Revolution?

Robert MacCulloch

Informal Family Insurance and the Design of the Welfare State

Rafael Di Tella, Robert MacCulloch

Partisan Social Happiness

Rafael Di Tella, Robert MacCulloch

The End of Moderate Inflation in Three Transition Economies?

Josef C. Brada, Ali M. Kutan

Subnational Government Bailouts in Germany

Helmut Seitz

The Evolution of Monetary Policy in Transition Economies

Ali M. Kutan, Josef C. Brada

Why are Eastern Europe’s Banks not failing when everybody else’s are?

Christian E. Weller, Bernard Morzuch

Stability of Monetary Unions: Lessons from the Break-Up of Czechoslovakia

Jan Fidrmuc, Julius Horvath and Jarko Fidrmuc

Multinational Banks and Development Finance

Christian E. Weller and Mark J. Scher

Financial Crises after Financial Liberalization: Exceptional Circumstances or Structural Weakness?

Christian E. Weller

Industry Effects of Monetary Policy in Germany

Bernd Hayo and Birgit Uhlenbrock

Financial Fragility or What Went Right and What Could Go Wrong in Central European Banking?

Christian E. Weller and Jürgen von Hagen

Size Distortions of Tests of the Null Hypothesis of Stationarity: Evidence and Implications for Applied Work

Mehmet Caner and Lutz Kilian

Financial Supervision and Policy Coordination in the EMU

Christian Weller

Financial Liberalization, Multinational Banks and Credit Supply: The Case of Poland

Volker Wieland

Monetary Policy, Parameter Uncertainty and Optimal Learning

Christian Weller

The Connection between more Multinational Banks and less Real Credit in Transition Economies

Christian Weller
B07-99 Comovement and Catch-up in Productivity across Sectors: Evidence from the OECD
Christopher M. Cornwell and Jens-Uwe Wächter

B06-99 Productivity Convergence and Economic Growth: A Frontier Production Function Approach
Christopher M. Cornwell and Jens-Uwe Wächter

B05-99 Tumbling Giant: Germany’s Experience with the Maastricht Fiscal Criteria
Jürgen von Hagen and Rolf Strauch

B04-99 The Finance-Investment Link in a Transition Economy: Evidence for Poland from Panel Data
Christian Weller

B03-99 The Macroeconomics of Happiness
Rafael Di Tella, Robert MacCulloch and Andrew J. Oswald

B02-99 The Consequences of Labour Market Flexibility: Panel Evidence Based on Survey Data
Robert B.H. Hauswald

1998

B16-98 Labour Market + Tax Policy in the EMU
Deutsch-Französisches Wirtschaftspolitisches Forum

B15-98 Can Taxing Foreign Competition Harm the Domestic Industry?
Stefan Lutz

B14-98 Free Trade and Arms Races: Some Thoughts Regarding EU-Russian Trade
Rafael Reuveny and John Maxwell

B13-98 Fiscal Policy and Intranational Risk-Sharing
Jürgen von Hagen

B12-98 Price Stability and Monetary Policy Effectiveness when Nominal Interest Rates are Bounded at Zero
Athanasios Orphanides and Volker Wieland

B11A-98 Die Bewertung der "dauerhaft tragbaren öffentlichen Finanzlage"der EU Mitgliedstaaten beim Übergang zur dritten Stufe der EWWU
Rolf Strauch

B11-98 Exchange Rate Regimes in the Transition Economies: Case Study of the Czech Republic: 1990-1997
Julius Horvath and Jiri Jonas

B10-98 Der Wettbewerb der Rechts- und politischen Systeme in der Europäischen Union
Martin Seidel

B09-98 U.S. Monetary Policy and Monetary Policy and the ESCB
Bernd Hayo

B08-98 Money-Output Granger Causality Revisited: An Empirical Analysis of EU Countries (überarbeitete Version zum Herunterladen)
Bernd Hayo

B07-98 Designing Voluntary Environmental Agreements in Europe: Some Lessons from the U.S. EPA’s 33/50 Program
John W. Maxwell

B06-98 Monetary Union, Asymmetric Productivity Shocks and Fiscal Insurance: an Analytical Discussion of Welfare Issues
Kenneth Kletzer

B05-98 Estimating a European Demand for Money (überarbeitete Version zum Herunterladen)
Bernd Hayo

B04-98 The EMU’s Exchange Rate Policy
Deutsch-Französisches Wirtschaftspolitisches Forum

B03-98 Central Bank Policy in a More Perfect Financial System
Jürgen von Hagen / Ingo Fender

B02-98 Trade with Low-Wage Countries and Wage Inequality
Jaleel Ahmad

B01-98 Budgeting Institutions for Aggregate Fiscal Discipline
Jürgen von Hagen

1997

B04-97 Macroeconomic Stabilization with a Common Currency: Does European Monetary Unification Create a Need for Fiscal Insurance or Federalism?
Kenneth Kletzer

Tom Lyon / John Mayo

B02-97 Employment and EMU
Deutsch-Französisches Wirtschaftspolitisches Forum

B01-97 A Stability Pact for Europe
(a Forum organized by ZEI)